sábado, 12 de marzo de 2016

Análisis Matemático – Carlos Ivorra Castillo – 1ra Edición

Zemanta Related Posts Thumbnail

Este texto consta de 13 capítulos y dos apéndices. Los dos primeros capítulos son de topología. Luego cálculo diferencial e integral de una y varias variables, lo que incluye un poco de (los teoremas de existencia y unicidad) y la teoría de la medida básica (hasta el teorema de Riesz y el teorema de cambio de variable).

Más adelante conceptos básicos de la geometría diferencial particularizados a subvariedades de Rn (hasta la integración en variedades, el teorema de Stokes y las propiedades básicas de la cohomología de De Rham) y algunos resultados más avanzados para el caso de superficies en R3 (geodésicas, curvatura de Gauss, etc.). Aparte de ejemplos propiamente analíticos y geométricos, hay algunas a la física (electromagnetismo, gravitación, mecánica de fluidos, etc.) En particular se ha incluido algunos complementos analíticos al estudio de las geometrías no euclídeas.

Capıtulo I: Topología
Capıtulo II: Compacidad, conexión y completitud
Capıtulo III: Cálculo diferencial de una variable
Capıtulo IV: Cálculo diferencial de varias variables
Capıtulo V: Introducción a las variedades diferenciables
Capıtulo VI: Ecuaciones diferenciales ordinarias
Capıtulo VII: Teoría de la medida
Capıtulo VIII: Teoría de la medida II
Capıtulo IX: Formas diferenciales
Capıtulo X: El teorema de Stokes
Capıtulo XI: Cohomología de De Rham
Capıtulo XII: Funciones Harmónicas
Capıtulo XIII: Aplicaciones al electromagnetismo

Título Original: Análisis Matemático
Autor/es: Carlos Ivorra Castillo
Edición: 1ra Edición
Tipo: Libro
Formato: PDF
Idioma: Español
59%
59%
VALORACIÓN

0 comentarios:

Publicar un comentario